Microtubules are dispensable for the initial pathogenic development but required for long-distance hyphal growth in the corn smut fungus Ustilago maydis.

نویسندگان

  • Uta Fuchs
  • Isabel Manns
  • Gero Steinberg
چکیده

Fungal pathogenicity often involves a yeast-to-hypha transition, but the structural basis for this dimorphism is largely unknown. Here we analyze the role of the cytoskeleton in early steps of pathogenic development in the corn pathogen Ustilago maydis. On the plant yeast-like cells recognize each other, undergo a cell cycle arrest, and form long conjugation hyphae, which fuse and give rise to infectious filaments. F-actin is essential for polarized growth at all these stages and for cell-cell fusion. Furthermore, F-actin participates in pheromone secretion, but not perception. Although U. maydis contains prominent tubulin arrays, microtubules are neither required for cell-cell recognition, nor for cell-cell fusion, and have only minor roles in morphogenesis of yeast-like cells. Without microtubules hyphae are formed, albeit at 60% reduced elongation rates, but they reach only approximately 50 mum in length and the nucleus fails to migrate into the hypha. A similar phenotype is found in dynein mutants that have a nuclear migration defect and stop hyphal elongation at approximately 50 mum. These results demonstrate that microtubules are dispensable for polarized growth during morphological transition, but become essential in long-distance hyphal growth, which is probably due to their role in nuclear migration.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inhibitory phosphorylation of a mitotic cyclin-dependent kinase regulates the morphogenesis, cell size and virulence of the smut fungus Ustilago maydis.

The regulation of cyclin-dependent kinase (CDK) activity through inhibitory phosphorylation seems to play an important role in the eukaryotic cell cycle. We have investigated the influence that inhibitory phosphorylation of the catalytic subunit of mitotic CDK has on cell growth and pathogenicity of the corn smut fungus Ustilago maydis. This model pathogen is worthy of attention since it is wel...

متن کامل

Discrete developmental stages during teliospore formation in the corn smut fungus, Ustilago maydis.

Ustilago maydis is a dimorphic fungus with a yeast-like non-pathogenic form and a filamentous (hyphal) pathogenic form that induces tumor formation in maize. Within mature tumors, hyphae give rise to teliospores, which are round, diploid cells surrounded by a specialized cell wall. Here we describe the time course of fungal development in the plant with a focus on the morphological changes in t...

متن کامل

Polar growth in the infectious hyphae of the phytopathogen ustilago maydis depends on a virulence-specific cyclin.

The maize smut fungus Ustilago maydis switches from yeast to hyphal growth to infect maize (Zea mays) plants. This switching is promoted by mating of compatible cells and seems to be required for plant penetration. Although many genes distinctively expressed during this dimorphic switch have been identified and shown to be essential for the infection process, none seems to be explicitly require...

متن کامل

The Ustilago maydis regulatory subunit of a cAMP-dependent protein kinase is required for gall formation in maize.

In the plant, filamentous growth is required for pathogenicity of the corn smut pathogen Ustilago maydis. Earlier, we identified a role for the cAMP signal transduction pathway in the switch between budding and filamentous growth for this fungus. A gene designated ubc1 (for Ustilago bypass of cyclase) was found to be required for filamentous growth and to encode the regulatory subunit of a cAMP...

متن کامل

The mitochondrial alternative oxidase Aox1 is needed to cope with respiratory stress but dispensable for pathogenic development in Ustilago maydis

The mitochondrial alternative oxidase is an important enzyme that allows respiratory activity and the functioning of the Krebs cycle upon disturbance of the respiration chain. It works as a security valve in transferring excessive electrons to oxygen, thereby preventing potential damage by the generation of harmful radicals. A clear biological function, besides the stress response, has so far c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular biology of the cell

دوره 16 6  شماره 

صفحات  -

تاریخ انتشار 2005